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Histamine, mast cells, and the enteric
nervous system in the irritable bowel
syndrome, enteritis, and food allergies
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There is altered expression of histamine H1 and H2 receptor
subtypes in mucosal biopsies from the terminal ileum and large
intestine of patients with symptoms of food allergy and/or irritable
bowel syndrome

T
he research article by Sander and
colleagues1 in this issue of Gut,
reports their results for expression

of histamine receptor subtypes in the
human intestinal tract from normal
individuals and patients with symptoms
of the irritable bowel syndrome (IBS)
and/or food allergies (see page 498).
Work of this nature was overdue
because most of the available histologi-
cal and functional data for histamine
receptors in the small and large intes-
tine were obtained from animal models.
The authors’ principal findings for the
human bowel are in general agreement
with the animal literature that reports
on expression of the histamine H1, H2,
and H4 receptor subtypes in the enteric
nervous system (ENS), intestinal mus-
culature, mucosal epithelium, and

immune/inflammatory cells. In contrast,
the finding by Sander and colleagues1

that histamine H3 receptors are not
expressed in the human bowel was
unexpected in view of the clearcut
evidence for functional involvement of
the H3 receptor subtype in the nervous
control of motility, secretion, and blood
flow in guinea pig intestine, which
serves as the primary animal model.2–5

The authors’ evidence for altered
expression of histamine H1 and H2

receptor subtypes in mucosal biopsies
from the terminal ileum and large
intestine of patients with symptoms of
food allergy and/or IBS is consistent
with current concepts for the involve-
ment of histamine release from enteric
mast cells and its paracrine signalling
function in the ENS as an underlying

factor in these two disorders.5–8

Histamine is not expressed by enteric
neurones and is not a neurotransmitter
in the ENS.9 Its signalling function is
paracrine in nature through release
from enteric mast cells and inflamma-
tory granulocytes. Mastocytosis and
presumably elevated availability of his-
tamine are present in microscopic coli-
tis, parasitic infections, IBS, and no
doubt additional functional gastroin-
testinal disorders associated with symp-
toms of cramping abdominal pain,
watery diarrhoea, and defecation
urgency.6 8 10–17

The appearance of histamine H2

receptors in human myenteric ganglia
is reminiscent of expression of the H2

receptor subtype in the guinea pig ENS.
Binding of histamine to H2 receptors on
enteric neuronal cell bodies in the
guinea pig, either during exogenous
application of histamine or by degranu-
lation of neighbouring mast cells, ele-
vates neuronal excitability characterised
by firing of longlasting trains of nerve
impulses.18–21 In the case of submucosal
secretomotor neurones, elevated firing
rates increase the volume of mucosal
secretions of electrolytes and H2O and
thereby increase the liquidity of the
intestinal contents, which in turn can
underlie neurogenic secretory diar-
rhoea.22 For musculomotor neurones in
the myenteric plexus, histamine H2

evoked firing alters contractile beha-
viour of the muscularis externa that is
coordinated with organised secretory
patterns.23 24 Similar outcomes for
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release of histamine and its actions at
the H2 neuronal receptors, now reported
by Sander and colleagues1 for human
ENS, can be reasonably assumed.
Nevertheless, progress in understanding
specific pathophysiological malfunc-
tions and therapeutic improvisation
requires that future human research be
pursued along the lines of what has
been done in basic science models.

Excitation of ENS neuronal perikarya
is one of the significant actions of
histamine at the H2 receptor subtype.
A second important action, which has
been well documented in the guinea pig
enteric ENS but not in humans, is
suppression of synaptic transmis-
sion.2 19 25 Exposure of the ENS to
histamine, either by exogenous applica-
tion in vitro or by release from sensitised
mast cells in response to allergins (for
example, food proteins or infectious
organisms), suppresses neurotransmit-
ter release at four important informa-
tion transmission nodes in the neural
microcircuitry. Which are: (1) fast exci-
tatory nicotinic synapses; (2) slow exci-
tatory synapses where serotonin,
substance P, calcitonin gene related
peptide, and ATP are among the puta-
tive neurotransmitters; (3) slow inhibi-
tory synapses, especially on submucosal
secretomotor neurones, where norepi-
nephrine release from the sympathetic
innervation and somatostatin released
from intrinsic neurons are inhibitory
neurotransmitters; and (4) sympathetic
neurovascular junctions.

Inhibition of neurotransmission in
each of these cases is presynaptic.
Stimulation of presynaptic inhibitory
receptors by histamine suppresses the
release of neurotransmitter from the
presynaptic axonal terminal and thereby
inhibits transmission of neural signals.
Inhibition of transmission at the multi-
tude of nicotinic synapses in the enteric
neural networks would be expected to
prevent ‘‘call-up’’ of selective beha-
vioural programmes or to selectively
activate a specific programme in the
ENS library of programmes (for exam-
ple, intestinal defence).5 Suppression of
slow excitatory transmission, either at
selective slow synapses or in combina-
tion with suppression of fast nicotinic
transmission, is probably also involved
in generation of the pattern of defensive
intestinal behaviour, which can be
demonstrated during exposure to sensi-
tising antigens in previously sensitised
animals. Slow inhibitory postsynaptic
potentials (IPSPs) in submucosal secre-
tomotor neurones impose a braking
action on neurogenic secretion that is
removed when histamine is applied
experimentally or released from enteric
mast cells in sensitised animals.
Removal of the sympathetic brake from

secretomotor neurones is a factor under-
lying the diarrhoeal states associated
with allergic responses and mucosal
inflammation.2 Suppression of norepi-
nephrine release at submucosal neuro-
vascular junctions removes the
sympathetic braking action on blood
flow, which in effect supports stimula-
tion of neurogenic mucosal secretion.4

Several types of presynaptic inhibitory
receptors are expressed in the ENS, one
of which is a histaminergic receptor. The
presynaptic histaminergic inhibitory
receptor in the guinea pig ENS belongs
to the histamine H3 receptor subtype.
The slow IPSPs in guinea pig secreto-
motor neurones, which are mediated by
release of norepinephrine and somatos-
tatin, are suppressed by histamine.2

Selective histamine H3 agonists, but
not histamine H1 or H2 agonists, act
presynaptically to suppress IPSPs, and
selective H3 antagonists, but not H1 or
H2 antagonists, block both the effects of
exogenously applied histamine and the
effects of histamine released from mast
cells in sensitised animal prepara-
tions.2 19–21 25 Likewise, suppression of
excitatory neurotransmission at other
neural synapses and neurovascular
junctions reflects histamine H3

mediated inhibition of neurotransmitter
release.4

Absence of the histamine H3 receptor
subtype from human bowel, as reported
by Sander and colleagues,1 was unex-
pected and is paradoxical in view of the
evidence in the literature for its expres-
sion and importance in the animal
model. Data to explain the paradox are
not readily available. On the one hand,
failure to find the human receptor with
any of three valid methods (that is,
immunohistochemistry, western blot, or
reverse transcription-polymerase chain
reaction) strongly supports the conclu-
sion that the H3 receptor is not
expressed in human bowel. On the other
hand, evidence from physiological stud-
ies convincingly supports expression
and important functional significance
of the receptor in the guinea pig model.
This is a dilemma raised by Sander and
colleagues.1

The importance of histamine release
from enteric mast cells in terms of
intestinal symptoms, which are asso-
ciated with human allergy, IBS and
brain-gut interactions in stress is widely
supported and convincing.12–15 26

Symptoms of watery diarrhoea, urgency,
cramping abdominal pain, and intest-
inal hypersensitivity to distension in
humans appear in general to have a
counterpart in animal models, whether
it is a guinea pig, rat, or canine model.5 6

These symptoms are perceived as side
effects of the ‘‘running’’ of a specific
ENS neural programme that has evolved

as a defensive mechanism for rapid
expulsion from the intestine of a threat
to the integrity of the whole animal. If
this is indeed the case, then the
mechanisms of histaminergic call-up of
programmed intestinal defence are not
expected to differ much across mamma-
lian species. Most of the results reported
by Sander and colleagues1 are consistent
with this concept, except for the absence
of the histamine H3 receptor subtype.
Histaminergic presynaptic inhibition
that removes the sympathetic brake on
secretion and mucosal blood flow would
seem to be a necessary requirement in
the ‘‘running’’ of the secretory compo-
nent of the neural defence programme
that ‘‘flushes’’ threatening agents and
organisms from the mucosa and main-
tains them in suspension in a fluid filled
intestine awaiting clearance by powerful
propulsive motility.

In view of the importance of immune/
inflammatory cells and histamine sig-
nalling in the ENS, thorough under-
standing for the human gut is
imperative. A credible start in this
direction has been made by Sander
and colleagues.1 Now, neurogastroenter-
ological research must determine
whether presynaptic inhibition in the
ENS has the same significance for the
common symptoms of food allergy,
mucosal inflammation, and brain-gut
interactions in stress in humans, as is
known to exist in animal models. If this
proves to be the case, then additional
investigation will be needed to deter-
mine if it might be mediated by a
histamine receptor other than the H3

subtype.
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Crohn’s disease: why the disparity in
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There has been no significant decrease in mortality in patients
with Crohn’s disease over the last several decades

I
t is well accepted that Crohn’s disease
is associated with a small but real risk
of death. Population based reports

from Sweden,1 2 Denmark,3 and Italy4

indicate that Crohn’s disease patients
have a higher mortality rate than
expected, although at least one notable
exception from the UK demonstrated
survival similar to the general popula-
tion (table 1).5 A preliminary report
from Olmsted County, Minnesota, indi-
cated a mortality rate that was about
20% higher (but not significantly differ-
ent statistically) than that expected,6

standing in contrast with the results of
a previous report from the same loca-
tion.7 The largest study of mortality in
Crohn’s disease was from a cohort of
approximately 6000 patients identified
through the General Practice Research
Database (GPRD), which contains the
computerised medical records of 6% of
the British population.8 The annual
mortality rate in Crohn’s disease was
1.6% compared with 1.0% in age, sex,
and practice matched controls. After
adjusting for age, sex, and cigarette
smoking, it appeared that the risk of
death was 73% higher in Crohn’s dis-
ease patients than in controls.8

Although the large cohort size makes

this study important, its generalisability
is limited by the fact that the cohort was
a mixture of incidence and prevalence
cases, the average age at entry into the
cohort was 42 years (higher than the
average age at diagnosis of Crohn’s
disease of late 20s/early 30s in most
studies), and the average follow up was
only three years. A recent systematic
review of ‘‘hard end points’’ in popula-
tion based cohorts of Crohn’s disease
concluded that there was no evidence
for a significant change in disease out-
come over the past 40 years.9 To sum-
marise, these studies suggest that the
mortality rate in Crohn’s disease ranges
from 30% lower than expected to 70%
higher than expected. All of these
studies are limited by the fact that most
of the patients in these cohorts were not
only identified retrospectively, but also
diagnosed before the ‘‘modern era’’ of
medical therapy for Crohn’s disease.

The European Collaborative Study
Group of Inflammatory Bowel Disease
(EC-IBD) prospectively developed a
cohort of patients newly diagnosed with
Crohn’s disease and ulcerative colitis at
20 European and Israeli centres between
October 1991 and September 1993. The
incidence of Crohn’s disease at these

centres over this two year period10 and
the clinical course in these patients in
the first year after diagnosis11 have been
previously reported. In the present issue
of Gut, Wolters and colleagues12 update
the follow up of approximately half of
the original EC-IBD cohort of Crohn’s
disease patients (n = 371) to determine
absolute, relative, and cause specific
mortality (see page 510). Median age
at diagnosis of Crohn’s disease was
31 years (range 15–83). Follow up was
complete in 92% of the cohort. After an
average follow up of approximately
10 years, 37 patients had died (10%).
Expected rates of death were calculated
using country, age, and sex specific rates
from the World Health Organisation
(WHO) mortality database. Using
actuarial techniques, the 10 year risk of
death was 10% versus 7% expected. One
would have expected 21 patients to have
died based on the WHO mortality rates.
The standardised mortality ratio (SMR,
which can be thought of as a relative
mortality rate) was 1.85, or 85% higher
than expected.

The authors examined their cohort for
risk factors. For both sexes, SMR was
significantly higher than expected.12 The
relative risk of death was numerically
higher in the northern European centres
(SMR 2.0 (95% confidence interval (CI)
1.3–3.0)) than in southern ones (SMR
1.6 (95% CI 0.8–2.7)) but this difference
was not statistically significant. When
the SMR analysis was stratified by
various aspects of the phenotypic
Vienna classification,13 age >40 years
at diagnosis (SMR 1.99 (95% CI, 1.4–
2.8)), colonic involvement at diagnosis
(SMR 2.1 (95% CI 1.3–3.1)), and
inflammatory disease behaviour at diag-
nosis (SMR 2.2 (95% CI, 1.5–3.2)) all
appeared to be associated with increased
mortality risk. However, in a multivariate
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